A preconditioned low-rank CG method for parameter-dependent Lyapunov matrix equations
نویسندگان
چکیده
This paper is concerned with the numerical solution of symmetric large-scale Lyapunov equations with low-rank right-hand sides and coefficient matrices depending on one or several parameters. Specifically, we consider the situation when the parameter dependence is sufficiently smooth and the aim is to compute solutions for many different parameter samples. Based on existing results for Lyapunov equations and parameter-dependent linear systems, we prove that the tensor containing all solution samples typically allows for an excellent low multilinear rank approximation. Stacking all sampled equations into one huge linear system, this fact can be exploited by combining the preconditioned CG method with low-rank truncation. Our approach is flexible enough to allow for a variety of preconditioners based, for example, on the sign function iteration or the ADI method. Copyright c © 2010 John Wiley & Sons, Ltd.
منابع مشابه
Truncated low-rank methods for solving general linear matrix equations
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملGreedy low-rank methods for solving general linear matrix equations‡
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملPreconditioned Global FOM and GMRES Methods for Solving Lyapunov Matrix Equations
This paper presents, a preconditioned version of global FOM and GMRES methods for solving Lyapunov matrix equations AX + XA = −BTB. These preconditioned methods are based on the global full orthogonalization and generalized minimal residual methods. For constructing effective preconditioners, we will use ADI spiliting of above lyapunov matrix equations. Numerical experiments show that the solut...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملLow - Rank Solution Methods for Large - Scale Linear Matrix Equations
LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR MATRIX EQUATIONS Stephen D. Shank DOCTOR OF PHILOSOPHY Temple University, May, 2014 Professor Daniel B. Szyld, Chair We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014